Find the arc length of the polar curve. Assume the entire curve unless noted otherwise.

1. $r=a$
2. $r=2 a \cos \theta$
3. $r=a-a \cos \theta$
4. $r=\sin ^{2}\left(\frac{\theta}{2}\right)$, from $\theta=0$ to $\theta=\pi$
5. $r=e^{3 \theta}$, from $\theta=0$ to $\theta=2$
6. $r=\sin ^{3}\left(\frac{\theta}{3}\right)$, from $\theta=0$ to $\theta=\frac{\pi}{2}$
7. $r=\theta^{2}, 0 \leq \theta \leq \sqrt{5}$
8. $r=\frac{e^{\theta}}{\sqrt{2}}, 0 \leq \theta \leq \pi$
9. $r=\sqrt{1+\sin 2 \theta}, \quad 0 \leq \theta \leq \pi \sqrt{2}$

AP Calculus BC - McGlone

Section 10.6 - Arc Length in Polar (Anton new; FDWK)

Find the arc length of the polar curve. Assume the entire curve unless noted otherwise.

1. $r=a$

$$
\int_{0}^{2 \pi} \sqrt{a^{2}+0^{2}} d \theta
$$

$\frac{d r}{d \theta}=0$

$$
S_{0}^{2 \pi} a d \theta
$$

$$
a \theta]_{0}^{2 \pi}=2 \pi a
$$

2. $r=2 a \cos \theta \quad \int_{0}^{\pi} \sqrt{4 a^{2} \cos ^{2} \theta+4 a^{2} \sin ^{2} \theta} d \theta$

$$
\begin{array}{ll}
\frac{d r}{d \theta}=-2 a \sin \theta & \int_{0}^{\pi} 2 a d \theta \\
& 2 a \theta]_{0}^{\pi}=2 a \pi
\end{array}
$$

3. $r=a-a \cos \theta \quad \int_{0}^{2 \pi} \sqrt{(a-a \cos \theta)^{2}+a^{2} \sin ^{2} \theta} d \theta \quad \rightarrow a \int_{0}^{2 \pi} \sqrt{4 \sin ^{2} \frac{\theta}{2}} d \theta$

$$
\begin{array}{rlr}
\frac{d r}{d \theta}=a \sin \theta & a \int_{0}^{2 \pi} \sqrt{1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta} d \theta & 2-2 a \int_{0}^{\pi} \sin \frac{\theta}{2} d \theta \\
& a \int_{0}^{2 \pi} \sqrt{2-2 \cos \theta} d \theta & \left.-8 a \cos \frac{\theta}{2}\right]_{0}^{\pi}=-8 a(0-1)=8 a
\end{array}
$$

4. $r=\sin ^{2}\left(\frac{\theta}{2}\right)$, from $\theta=0$ to $\theta=\pi$
$\frac{d r}{d \theta}=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \quad \int_{0}^{\pi} \sqrt{\sin ^{4} \frac{\theta}{2}+\sin ^{2} \frac{\theta}{2} \cos ^{2} \frac{\theta}{2}} d \theta$

$$
\left.\int_{0}^{\pi} \sin \frac{\theta}{2} d \theta=-2 \cos \frac{\theta}{2}\right]_{0}^{\pi}=-2\left(\cos \frac{\pi}{2}-\cos 0\right)=2
$$

5. $r=e^{3 \theta}$, from $\theta=0$ to $\theta=2$

$$
\begin{array}{ll}
\frac{d r}{d \theta}=3 e^{3 \theta} & \int_{0}^{2} \sqrt{e^{6 \theta}+9 e^{6 \theta}} d \theta \\
& \left.\sqrt{10} \int_{0}^{2} e^{3 \theta} d \theta=\frac{\sqrt{10}}{3} e^{3 \theta}\right]_{0}^{2}=\left[\frac{\sqrt{10}}{3}\left(e^{3}-1\right)\right.
\end{array}
$$

6. $r=\sin ^{3}\left(\frac{\theta}{3}\right)$, from $\theta=0$ to $\theta=\frac{\pi}{2} \quad \int_{0}^{\frac{\pi}{2}} \sqrt{\sin ^{6} \frac{\theta}{3}+\sin ^{4} \frac{\theta}{2} \cos ^{2} \frac{\theta}{2}} d \theta$

$$
\frac{d r}{d \theta}=f \sin ^{2} \frac{\theta}{3} \cos \frac{\theta}{3}
$$

$$
\int_{0}^{\frac{\pi}{2}} \sin ^{2} \frac{\theta}{2} d \theta
$$

$$
\frac{1}{2} \int_{0}^{\frac{\pi}{2}} 1-\cos \theta d \theta
$$

$$
\left.\frac{1}{2}(\theta-\sin \theta)\right]_{0}^{\pi / 2}=\frac{1}{2}\left(\frac{\pi}{2}-1\right)
$$

7. $r=\theta^{2}, 0 \leq \theta \leq \sqrt{5}$

$$
\frac{d r}{d \theta}=2 \theta
$$

$$
\begin{aligned}
& \int_{0}^{\sqrt{5}} \sqrt{\theta^{4}+4 \theta^{2}} d \theta \\
& \int_{0}^{\sqrt{5}} \sqrt{\theta^{2}\left(\theta^{2}+4\right)} d \theta \\
& \int_{0}^{\sqrt{5}} \theta \sqrt{\theta^{2}+4} d \theta \\
& u=\theta^{2}+4 \\
& d u=2 \theta d \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8. } r=\frac{e^{\theta}}{\sqrt{2}}, 0 \leq \theta \leq \pi \\
& \frac{d r}{d \theta}=\frac{e^{\theta}}{\sqrt{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\pi} \sqrt{\frac{e^{2 \theta}}{2}+\frac{e^{2 \theta}}{2}} d \theta \\
& \int_{0}^{\pi} e^{\theta} d \theta \\
& \left.e^{\theta}\right]_{0}^{\pi}=e^{\pi}-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 9. } \begin{aligned}
& r=\sqrt{1+\sin 2 \theta}, 0 \leq \theta \leq \pi \sqrt{2} \quad \int_{0}^{\pi \sqrt{2}} \sqrt{(1+\sin 2 \theta)+\frac{\cos ^{2} 2 \theta}{1+\sin 2 \theta}} d \theta \\
& r^{2}=1+\sin 2 \theta
\end{aligned} \\
& \operatorname{Zr} \frac{d r}{d \theta}=2 \frac{\cos 2 \theta}{r} \\
& \int_{0}^{\pi \sqrt{2}} \sqrt{\frac{(1+\sin 2 \theta)^{2}+\cos ^{2} 2 \theta}{1+\sin 2 \theta}} d \theta \\
& \int_{0}^{\pi \sqrt{2}} \sqrt{\frac{2+2 \sin 2 \theta}{1+\sin 2 \theta}} d \theta \\
& \left.\int_{0}^{\pi \sqrt{2}} \sqrt{2} d \theta=\sqrt{2} \theta\right]_{0}^{\pi \sqrt{2}}=2 \pi
\end{aligned}
$$

